Block-adaptive quantum mechanics: An adaptive divide-and-conquer approach to interactive quantum chemistry

نویسندگان

  • Maël Bosson
  • Sergei Grudinin
  • Stéphane Redon
چکیده

We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive algorithms for computational chemistry and interactive modeling. (Algorithmes adaptatifs pour la chimie numérique et la modélisation interactive)

At the atomic scale, interactive physically-based modeling tools are more and more in demand. Unfortunately, solving the underlying physics equations at interactive rates is computationally challenging. In this dissertation, after presenting a review of theories and algorithms for interactive electronic structure computations, we propose new algorithms that allow for interactive modeling of che...

متن کامل

Interactive quantum chemistry: A divide-and-conquer ASED-MO method

We present interactive quantum chemistry simulation at the atom superposition and electron delocalization molecular orbital (ASED-MO) level of theory. Our method is based on the divide-and-conquer (D&C) approach, which we show is accurate and efficient for this non-self-consistent semiempirical theory. The method has a linear complexity in the number of atoms, scales well with the number of cor...

متن کامل

Structure-Activity Relationship of Imidazobenzodiazepines, an AM1 Semi-Empirical Quantum Mechanics Study

Conformations and electronic properties of a series of imidazobenzodiazepines are investigated by AM1 semi-empirical quantum mechanics method. It is shown that substitution of Cl in position 7 instead of 8, changes the geometry of the seven membered lactam ring; this may put the N5 nitrogen in a better positon to act as a hydrogen bond acceptor, and the phenyl ring in position 6 is probably...

متن کامل

Million-to-Billion Atom Simulation of Chemical Reactions: Embedded Divide-and-Conquer and Hierarchical Cellular Decomposition Frameworks for Scalable Scientific Computing

Simulating chemical reactions involving billions of atoms has been a dream of scientists, with broad societal impacts. This paper realizes the dream through novel simulation methods, algorithms, and parallel computing and visualization techniques. We have designed O(N) embedded divide-and-conquer (EDC) algorithms for 1) first principles-based parallel reactive force-field (P-ReaxFF) molecular d...

متن کامل

Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials

For large-scale atomistic simulations involving chemical reactions to study nanostructured energeticmaterials, we have designed linear-scaling molecular dynamics algorithms: 1) first-principles-based fast reactive force field molecular dynamics, and 2) embedded divide-and-conquer density functional theory on adaptive multigrids for quantum-mechanical molecular dynamics. These algorithms have ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 34 6  شماره 

صفحات  -

تاریخ انتشار 2013